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Nonlinear Quantum Mechanics is a Classical Theory 
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Quantum mechanics with nonlinear operators is shown to be an essentially 
classical theory. A general scheme of delinearization of a quantum theory is 
described. 

1. I N T R O D U C T I O N  

For many  years there have been attempts to incorporate nonlinear 
operators into the standard formalism of quantum mechanics (see, e.g., 
Bohm, 1987; Mielnik, 1974; Biatynicki-Birula and Mycielski, 1976; Davies, 
1979; Gisin, 1981; Weinberg, 1989). At first sight the acceptance of  nonlinear 
operators seems to cause only minor changes of  the theory itself; non- 
linearities are expected to help in removing some quantal "paradoxes"  or, 
as in Weinberg's  (1989) proposal ,  to test the standard quantum mechanics. 
It should be stressed, however, that nonlinear quantum mechanics, i.e., the 
standard quantum mechanics supplemented by nonlinear operators as rep- 
resenting observables, is not merely an " improved"  or "generalized" quan- 
tum mechanics,  but a totally reconstructed new theory, In fact, a nonlinear 
quantum mechanics, if  such a theory is ever to become a mature one, has 
to be a classical (nonquantal)  theory of  quanta1 phenomena.  We want to 
demonstrate  here the dramatic collapse of  the elaborated structure of  
quantum mechanics caused by introducing nonlinear observables. 

It is rather obvious that such a demonstrat ion demands a theoretical 
f ramework which would be sufficiently general to cover quantal as well as 
classical theories. It appears  that the so-called "operat ional  approach"  to 
statistical theories (Davies, 1976; Ludwig, 1983) suits well this purpose. 
Our considerations are based on known mathematical  results which are 
found in Alfsen (1971) and Asimov and Ellis (1980). It also should be 
acknowledged that some of  the basic ideas of  this paper  have been known 
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for years. Thus, the description of quantal mixed states as probability 
measures on pure states was proposed by Misra (1974) and Ghirardi et al. 
(1976), the phenomenon of  distinguishing statistical mixtures of quantal 
pure states by nonlinear operators was demonstrated by Haag and Bannier 
(1978), and the transformations of a physical theory caused by a restriction 
or an extension of the set of  admissible measurements were observed by 
Holevo (1982) and Neumann (1985). The general conclusion of this paper, 
that nonlinear quantum mechanics is inevitably a classical theory, was 
announced as early as 10 years ago (Bugajski, 1979, 1980, 1981); however, 
it seems even more important now in the face of growing interest in nonlinear 
modifications of quantum mechanics. 

Before we come to the point, we should introduce several notions. Let 
V be an order-unit Banach space. Elements of the order interval [o, e] c V, 
where o is the origin and e is the order unit of V, are called effects. The 
set of effects is endowed with the order inherited from V and two partial 
operations " + "  and " - "  defined as the restrictions to [o, e] of the corre- 
sponding linear operations over V. The set of effects is always convex; its 
set of extreme effects will be denoted Ex[o, e]. The extreme elements of 
[o, e] are called sharp effects (decision effects in terms of the Marburg 
school of  Ludwig), whereas the other effects are fuzzy. An observable 
(related to V) is a vector-valued measure A:B(R) ~ [o, el, where B(•) is 
the o'-field of  Borel subsets of the real line •, with A(R) = e. If the range 
of an observable A is contained in Ex[o, e], we call it sharp; otherwise, it 
is unsharp (fuzzy if the range of A consists of  fuzzy effects only). Two 
effects are called compatible (comeasurable) if they both belong to the 
range of an observable; two observables are compatible if the set join of 
their ranges consists of pairwise compatible effects only. 

The Banach dual of  (an order-unit Banach space) V is a base-norm 
Banach space V*, the base S of V* is called the set of  states (of V). S is 
convex and weak-* compact, its extreme elements are called pure states. 
We will say that W c  V separates elements of T c  S iff for any a, /3 ~ T 
there is a ~ W such that a(a) ~/3(a). The interval [o, e] always separates 
all states of  S. The real number a ( a ) ,  a ~ S, a ~ [o, e] is called the probability 
(of  occurrence) of the effect a in the state a. A composition of a state a 
and an observable A defines a probability measure on ~. 

S will be called a simplex (more precisely, a Bauer simplex) iff for 
every point a of S there exists a unique probability measure ~ supported 
by ExS (the weak-* closure) such that 

a ( a l = f  /3(a) dl.~(/3) 
E x S  

for any a ~ [o, e] c V. If S is a simplex, then ExS ='ExS, S can be identified 
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with M(ExS)-~-- the set of  probabili ty measures on ExS, and V can be 
identified with C(ExS), the order-unit Banach space of all continuous real 
functions on the compact  Hausdorff  space ExS. I f  (and only if) S is a 
simplex, V is a lattice in its natural ordering and [o, e] is a lattice. I f  S is 
a simplex, then V will be called classical. Otherwise, we will say that V is 
quantal. 

2. Q U A N T U M  M E C H A N I C S  W I T H  N O N L I N E A R  OPERATORS 

The abstract notions of  Section 1 are well illustrated by the standard 
quantum mechanics, i.e., the handbook theory based on a separable Hilbert 
space ~ without superselection rules. The set ~ , ( ~ )  of  all self-adjoint 
bounded  (linear) operators on ~ corresponds to V with its natural structure 
of  an order-unit  Banach space with respect to the operator norm. The sharp 
observables related to ~ , ( ~ )  are then projection-valued measures which, 
considered as spectral ones, define self-adjoint operators on ~. This time- 
honored representation of  quantum sharp observables by self-adjoint 
operators is hardly possible for unsharp ones. 

Instead of  S as defined in Section 2, the standard quantum mechanics 
considers a weak-* dense subset S, of  S consisting of all ultraweakly 
continuous real linear functionals on ~ s ( ~ ) -  Sn, the set of  normal states, 
is identified with the base of  the base-normed Banach space ~ ( ~ )  of  all 
self-adjoint operators of  the trace class on ~.  ~ s ( ~ )  is the predual  of  ~ s ( ~ ) .  

Every observable defines the mean-value function on ExSn, which for 
a bounded  observable can be extended to a continuous real linear functional 
on ~rs(~).  Thus, to every (bounded) observable is attached, via the mean- 
value function on ExSn, an element of  ~ ,  ( ~ ) .  This correspondence between 
observables and operators on ~ is one-to-one if we restrict ourselves to the 
sharp bounded observables and then agrees with the spectral theorem. Any 
mean-value function on ExSn also can be uniquely extended over ExS and 
hence over ~ s ( ~ ) * ,  defining then a weak-* continuous linear functional 
on ~ , ( ~ ) * .  

Nonl inear  "observables"  are usually introduced in the standard quan- 
tum mechanics in the traditional way as nonlinear operators acting on ~. 
There is nothing like a spectral theorem for nonlinear operators,  hence they 
cannot be considered as observables in the sense defined above. The recent, 
and up to now the best developed, proposal  of  Weinberg (1989), where 
nonlinear "observables"  are defined as nonbilinear functions on ~ x  ~,  
also suffers this shortcoming. Nevertheless, any nonlinear operator (as well 
as any Weinberg nonbilinear function) defines a function MB on ~ formally 
in the same way as any sharp observable defines the mean-value function 
on pure states, MB(~,) := (tp, Bq,) for a nonlinear operator  B and qJ ~ ~.  The 
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function Ms is considered as the "mean  value" (or the "expectat ion value") 
of  a nonlinear "observable"  (represented by B) in the pure state @. 

We should distinguish two fundamental  classes of  nonlinear generaliza- 
tions of  quantum mechanics: (i) homogeneous,  where any nonlinear 
"observable"  represented by a nonlinear operator B has to satisfy the 
homogeneity condition B(c@) = cB(tp) for any complex number  c and any 

~ ~,  and (ii) nonhomogeneous,  where the homogeneity condition does 
not need to be satisfied. We will restrict our considerations to the first case. 
Nonhomogeneous  "observable"  should distinguish different normalizations 
of  ~b, so such an "observable"  should be re la ted--according to the ideas of  
the "operat ional  app roach" - -wi th  a measuring device which gives different 
expectation values for statistical ensembles with different numbers of  
samples of  the investigated physical system. This means that the "expecta- 
tion value" of  such a nonhomogeneous "observable"  could not be even 
measured in the standard sense, as any attempt to repeat the measurement  
or to increase its accuracy by increase of  the number  of  samples would 
disturb the "expectat ion value" itself. Thus, nonhomogeneous "observ- 
ables" could be accepted only if we change the traditional interpretation 
of II ~,11, which cannot be done in the frame of the "operat ional  approach."  
There are also other reasons to reject the nonhomogeneous case- -see  Haag 
and Bannier (1978) and Weinberg (1989). 

Taking into account the homogeneity condition, we conclude that the 
"mean-value"  functions for nonlinear "observables"  are defined on ExS,. 
We will assume that they are defined on the whole ExS,,, and are bounded 
and continuous with respect to the topology induced on ExSn by the weak 
Banach one. Obviously any bounded observable (i.e., any bounded effect- 
valued measure on •) also defines a similar function. However, M A  for 
A - - a n  observable can be always linearly extended over Sn, which is hardly 
ever possible for a nonlinear "observable."  Let us assume that MB (defined 
on ExS,,) for some nonlinear operator B can be extended on S,. Then it 
also can be extended to a continuous linear functional on 3-s(~),  which in 
turn is an element of  ~ s ( ~ ) .  Thus, MB = M A  for some sharp observable A. 
We conclude that if only MB does not coincide with M A for some observable 
A, then MB has no linear extension over S,,. This provides a formal proof  
of  the known fact that it is impossible to find a consistent definition of  the 
expectation value for a nonlinear "observable"  in quantal mixed states. 
Sometimes this property is referred to as the impossibility of  defining the 
trace for nonlinear operators. 

One could hope to overcome this obstacle by extending linearly Ms 
(for a nonlinear "observable"  B) over statistical mixtures of pure states. 
Here we touch upon the specific quantal feature called "nonunique decom- 
posability of  quantum mixtures" (see, e.g., Beltrametti, 1985). To make the 
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discussion simpler, we will assume that nonlinear "observables" are rep- 
resented by mean-value functions on ExS, so by elements of the order-unit 
Banach space C(ExS). The mean-value functions of  observables form then 
a norm-closed linear subspace, denoted ~,  of  C(ExS). If  we want to extend 
functions belonging to C(ExS) over formal convex combinations of  ele- 
ments of ExS, we arrive in a natural way at M(ExS)l--the set of  all 
probability measures on ExS, which from the physical point of view is the 
set of  all statistical mixtures of quantal pure states. M ( ~ ) ~ -  is the base 
of  the base-normed Banach space M(ExS) of  all Baire (regular Borel) 
signed measures on ExS. As M(ExS)= C(ExS)* (the Banach dual), we 
conclude that any function of C(ExS) can be linearly extended over 
M(ExS)~ and that C(ExS) separates M ( ~ ) ~ .  Translated into a less 
formal language, it means that we can consistently define "expectation 
values" of  nonlinear "observables" in statistical mixtures of quantal pure 
states and that nonlinear "observables" distinguish all such statistical 
mixtures. 

It is nearly obvious that 5~c C(ExS) does not separate elements of  
M(ExS)-~. Let us assume the opposite. Then the annihilator of  5~, ~ •  := 
{aEM(~) Ia(MA)=O for all MAC~}, would contain only the zero 
measure [the origin of  M(ExS)]. It is known, however, that M(ExS)/~ • 
is isometric to ~ s (~ )* .  Then the triviality of ~ 1  implies that M(ExS) 
itself should be isometric to ~s (~ )* -  This is a contradiction, because the 
base of  M(ExS) is a simplex, which surely does not hold for ~ s (~ )* .  Thus, 
~ 1  must be nontrivial, which leads to the mentioned "nonunique 
decomposability of  quantum mixtures." Indeed, the projection of  M(ExS) 
onto the quotient space M(ExS)/~ • is many-to-one when ~f• ~ {0}. As the 
quotient space is isometric to ~ ( ~ ) * ,  we see that many different probability 
measures on ExS are identified by 5fs(~) with one nonpure quantal 
state. 

The idea of  expanding S (or S,) to M(ExS,)~ appeared many years 
ago as a way of  resolving the annoying paradoxes of  the quantal description 
of  composed systems (Misra, 1974; Ghirardi et al., 1976). However, as it 
was shown above, quantal observables do not separate elements of 
M(ExSn)~; hence, if we want safely to introduce statistical mixtures of 
pure states in place of  the quantal nonpure states we should look for a 
larger class of observables than the quantal (sharp and unsharp) ones. The 
first suggestion that nonlinear "observables" could do that job we owe to 
Haag and Bannier (1978). 

The collapse of M(E~S)~  to a nonsimplectic convex set ~s(~g) *§ as 
a result of  restricting C(ExS) to its subspace ~ is well known in modern 
functional analysis. It was also observed by several physicists (Bugajski, 
1980, 1981; Holevo, 1982; Neumann, 1985; Ludwig, 1990), who considered 
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it merely as a curiosity. In the context of  nonlinear generalizations of  
quantum mechanics it acquires importance as an indication of  the profound 
difference between the standard quantum mechanics and its nonlinear 
generalizations. We have demonstrated above that the introduction of non- 
linear "observables"  (even in so lame a way as is usually done) forces us 
to leave the standard theory based on ~ s ( ~ )  and S for a new one based 
on C(ExS) and M(ExS)-~. The latter is, however, no longer quantal, but 
rather essentially classical, at least in the formal meaning. 

The striking disclosure of  the classical character of  nonlinear quantum 
mechanics is a result of  applying to it the ideas of  the operational approach.  
Nevertheless, it is evident that what we have done above is by no means a 
satisfactory formulation of nonlinear quantum mechanics as a statistical 
theory. The notion of nonlinear "observable"  does not satisfy the definition 
of observable; its fundamental  shortcoming is that it does not provide rules 
for calculating the probabili ty distribution of results of  a measurement  of 
a nonlinear "observable."  Another weak point of  our considerations is the 
identification of nonlinear "observables"  as elements of  C(ExS). From a 
more general point of  view it is a rather unfounded extrapolation, because 
the tight connection between observables and elements of  the basic 
order-unit Banach space is an accidental feature of  the standard 
quantum mechanics. Thus, we see that the procedure of  "delinearization" 
of  the standard quantum mechanics needs a precise formulation. We will 
do this below, having in mind the basic conclusions of  the above con- 
siderations. 

3. D E L I N E A R I Z A T I O N  OF A QUANTUM T H E O R Y  

If  we want to formulate a correct (from the "operat ional"  point of  
view) scheme of delinearization of a quantum theory we should avoid 
misleading suggestions coming from the specific features of  the standard 
quantum mechanics. This is the reason that we start from a general order-unit 
Banach space Vq which houses the set [o, e]q of all effects of  the quantum 
theory in question. We assume that the set Sq of  states of  Vq is not a simplex, 
to assure the minimum (perhaps also the essence) of  the quantal character 
of  the theory based on Vq and Sq. 

The space Vq admits now a functional representation D: Vq ~ C(12), 
where C(12) is the order-unit Banach space of continuous functions on 
12 := ExSq. D is a linear endomorphism; we obtain it as a restriction to 12 
of  the canonical representation of Vq as the space of  those weak-* continuous 
affine functions on Sq which can be extended over V*. According to the 
Kadison theorem, the map D provides the smallest separating functional 
representation of Vq. The image of Vq under D, which will be identified 
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with Vq itself, is a norm closed proper subspace of  C(f~). It is evident that 
D puts [o, e]q into [o, e]c c C(f / ) ;  the extreme effects of Vq (if there are 
any nontrivial ones) are in general mapped on fuzzy effects of C(12). 

As a consequence of the considerations of Section 2, we assume that 
C(12) is the basic constituent of the delinearized theory. We are not going, 
however, to consider elements of C(12) as representing nonlinear "observ- 
ables." Observables of the delinearized theory have to be defined as [o, e]c- 
valued measures on R. Thus, [o, e]c will get a physical interpretation as 
the set of  all effects (elementary observables) of the delinearized theory. 
All linear combinations of  elements of [o, e]c span the space C(f / ) ,  so the 
statistical mixtures represented by elements of  M(f/)~- are separated by 
[o, e]~. This is a general formulation of the statement: "nonlinear observ- 
ables distinguish statistical mixtures of quantum pure states." 

On the other hand, it is also clear that Vq does not separate elements 
of  M( f / )~ ,  as the proof  presented in Section 2 admits a straightforward 
generalization. Thus, we see that even in this general formulation we can 
state that "quantal observables do not distinguish statistical mixtures of 
quantal pure states." The quotient map Q: M(f~) ~ V* is then nontrivial, 
so the integral representation of points of Sq is nonunique. For a given 
ce ~ Sq any probability measure /z belonging to Q-~(a)  is a representing 
measure for a, i.e., satisfies the relation a(a)=~afl(a)dlx(~) for any 
a c [o, e]q. Observe that fl(a) for fixed a e [o, e]q and variable fl c ~ is 
simply the image of a under the delinearization map D. The nonunique 
representation of a c Sq by a probability measure on ~ (for a ~ f~ c Sq the 
representation is unique) is an abstract formulation of the "nonunique 
decomposability of quantum mixtures." 

It should be observed that [o, e]~ does not have in general extreme 
elements except o and e. There is, however, a well-established tradition that 
the set of  effects should possess a rich collection of extreme points, including 
in the classical case the Boolean algebra of  measurable sets in question. 
A natural way to satisfy this demand would be to pass to the second 
dual C(~)**  in order to obtain the weak-* compactification of [o, e]~, 
unfortunately, it provides us with too large set of  extreme effects. As a 
compromise we propose to consider, instead of C(12), the order-unit Banach 
space of  Baire functions on fl; we will denote it Vol. The set Ex[o, e]c~ of 
extreme effects of Vc~ consists exactly of all Baire subsets of f~ and is a 
Boolean lattice under the inherited order. Vd is a weak-* dense subspace 
of C(12)**; we will consider it together with the induced topologies. The 
original space C(l))  is naturally identified with a norm closed subspace of 
Vcl. 

The delinearization map D can be now considered as a linear 
endomorphism of Vq into Voj; hence, it preserves (among others) the order 
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of Vq. This implies that D transforms the quantal effects [o, e]q into the 
classical ones: D([o, e]q) c [o, e]ol. D restricted to [o, e]q has the following 
properties: D(o) = o, D(e) = e, D(a + b) = D(a) + D(b) if a + b does exist 
in [o, e]q, D ( a - b ) =  D ( a ) - D ( b )  if a - b  does exist in [o, e]q. These 
properties together with the norm-closeness of Vq in Vo~ suffice for a safe 
transportation of original quantal observables into the delinearized theory. 
All observables related to Vq are then observables of the delinearized theory, 
i.e., if A:B(~)  ~ [o, e]q is an observable, then its composition with the 
delinearization map Do A : B ( R ) ~  [o, e]cj is an observable as well. This 
does not mean, of course, that D preserves also the "name,"  i.e., the physical 
interpretation of an observable: it could happen that, e.g., the energy 
observable of the original quantum theory is not the energy observable of 
the delinearized theory. 

The preservation of observables by D provides a safe basis for the 
opinion that the delinearized theory is an extension of the original one. 
Nevertheless, we should be aware of quite dramatic changes caused by the 
delinearization. The notorious "quantum logic" Ex[o, e]q is mapped by D 
on nonextreme (fuzzy) effects of [o, e]cl and loses almost all its nice proper- 
ties (assuming that for a given Vq it makes sense to talk about a "quantum 
logic" at all). We should accept it without worry, as even in the operational 
quantum mechanics, where the legitimate successor of the "quantum logic" 
Ex[o, e]q is the whole set of effects [o, e]q, the majority of standard proper- 
ties of "quantum logic" is not valid. On the other hand, the destruction of 
"quantum logic" by D is a necessary condition for the realization of the 
delinearization procedure. Namely, the map D materializes the idea of 
"hidden variables" for the original quantum theory. In spite of all celebrated 
"no-go" theorems, it appears fairly possible just because D transfers the 
original quantum theory into a classical operational theory and maps (event- 
ual) sharp effects and sharp observables onto fuzzy ones. 

It also should be stressed that the relations among quantal observables 
are not in general preserved by D. The theory resulting from the delineariz- 
ation is entirely classical, so all its observables, including these transformed 
from the quantum theory, are comeasurable. Thus, the delinearization 
invalidates commutativity, complementarity, uncertainty, and other so 
widely discussed peculiarities of the set of quantal observables. For any 
two observables transported by D from the original quantal theory there 
is in the delinearized theory a join observable, which completely trivializes 
the question of quantum joint probabilities and related problems. 

A similar situation arises for quantal pure states. The set f~ = ExSq 
occupies more or less the same position in the original quantum theory as 
in its delinearization. Nevertheless, the characteristic quantal features of 
ExSq disappear. The most fundamental structural property of ExSq is the 
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existence of  nontrivial transition probabilities between quantal pure states 
(which implies, e.g., that quantal pure states do not need to be pairwise 
orthogonal). In the standard quantum mechanics the transition probability 
is defined via the Hilbert-space inner product; it makes the impression that 
the transition probability is an inherent property of the set of pure states. 
However, the operational approach suggests that the transition probability 
should be related to the set of admissible operations, then to the sets of  
effects and observables (see, e.g., Bugajski and Lahti, 1980). Without 
entering into a detailed discussion here, we could propose the following 
definition of the transition probability pq(a, fl) for a,/3 c ExSq in a general 
case: pq(O~,/3) := 1 --sup{[a(a) --/3(a)[la ~ [o, e]q}. It is easy to check that 
in the standard quantum mechanics this definition coincides (for a,/3- 
normal pure states) with the traditional one, whereas in the general case 
1 --pq(a,/3) is just the statistical distance (see, e.g., Busch, 1987) restricted 
to ExSq. Our definition of pq(a,/3) stresses the crucial dependence of the 
transition probability on the "theoretical environment" of  ExSq. Indeed, 
if we consider now ExSq as the "phase space" of the delinearized theory, 
we find that any two different pure states are orthogonal (i.e., pcl(a, ~) = 0 
for any a,/3 ~ f~, a ~/3),  which is a result of  extending the set of admissible 
effects. 

4. INTERPRETATIONS 

The procedure of delinearization of  a quantum theory is merely a 
formal scheme which should be provided with an appropriate interpretation. 
We will briefly discuss three possible interpretations, starting from (presum- 
ably) the most conservative one. 

4.1. Quantum Mechanics  Is Valid 

The preliminary state of  development of  nonlinear quantum mechanics 
motivates to some extent a sceptical attitude toward the above consider- 
ations. Even so, the formal scheme of delinearization could be interesting 
as a new technical framework. 

(al) The delinearization provides a classical description of a quantum 
theory, which after some elaboration could take the place of the Wigner- 
Moyal one. It opens the possibility of extending over quantum theories the 
classical notions of statistics, information theory, etc., and provides a 
language in which one can compare quantum notions and their classical 
prototypes. 

(a2) We could see the delinearization scheme as a method of  producing 
"quantal theories" from a classical one. Then we can use the quantization 
map Q to create abstract models of "quantum" theories by different choices 



970 Bug~s~ 

of VqC C(f~). Such a models, even if of no practical use, could have a 
theoretical value as examples of  non-Hilbertian "quantal"  theories. 

4.2. Quantum Mechanics Admits Hidden Variables 

One can get the impression that the delinearization scheme provides 
a successful realization of  the idea of "hidden variables." If  this were to 
be so, we should see the delinearized theory as a classical theory of a 
hypothetical subquantum level, whereas the original quantum theory--val id 
on its own level of descript ion--would be related to it as, say, classical 
thermodynamics is to the classical statistical mechanics. There are some 
arguments against this interpretation. The set of  pure states (the phase 
space) of  the delinearized theory is essentially the same as the set of  pure 
states of the original quantum theory. This seems to contradict the idea of  
hidden variables, which aims to explain the quantal probabilities as resulting 
from a classical statistics--hence the quantal pure states should be represen- 
ted by nontrivial probability measures on a hidden-variables phase space. 
Moreover, the delinearized theory is not exactly a classical statistical theory 
as it should be according to the hidden-variables idea, but rather the 
operational extension of a classical statistical theory admitting fuzzy 
(unsharp) observables. 

On the other hand, the delinearization provides indeed an embedding 
of  a quantum theory into a classical one in spite of the known negative 
results. This apparent contradiction is explained by the observation that 
the disproved version of  the hidden-variables hypothesis assumes an embed- 
ding of the extreme quantum effects into the set of extreme classical effects, 
which does not hold here. 

4.3. Quantum Mechanics Is Not Valid 

It seems that the most natural interpretation of the delinearization 
should start with an obvious realization that the delinearized theory is a 
nonlinear extension of  the original one. This attitude leads, however, to a 
radical conclusion. The embedding of Vq into Vd means now that almost 
all specific features of quantal theories can be explained in a surprising and 
trivial way: they would result from restricting the set of  observables of  a 
classical theory. All the mysteries, puzzles, and paradoxes  of  quantum 
mechanics together with its allegedly inherent probabilistic character would 
be merely by-products of  the unsufficiently motivated linearity assumption. 
The delinearization should then imply an acceptance (or an anticipation) 
of  the existence of experiment~_l capabilities ignored up to now which are 
to be represented by nonlinear observables. If  it proves true, then quantum 
mechanics becomes a classical theory. 
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